Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.015
Filtrar
1.
Top Curr Chem (Cham) ; 382(2): 15, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703255

RESUMO

Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.


Assuntos
Ciclo-Octanos , Triazinas , Triazinas/química , Triazinas/síntese química , Ciclo-Octanos/química , Ciclo-Octanos/síntese química , Alcinos/química , Alcinos/síntese química , Catálise , Indicadores e Reagentes/química , Estrutura Molecular
2.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725091

RESUMO

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


Assuntos
Transcriptase Reversa do HIV , Vírus da Imunodeficiência Felina , Inibidores da Transcriptase Reversa , Animais , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Gatos , Vírus da Imunodeficiência Felina/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , Humanos , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Alcinos/química , Alcinos/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Ciclopropanos/farmacologia , Ciclopropanos/química , Simulação de Acoplamento Molecular , Benzoxazinas/química , Benzoxazinas/farmacologia
3.
Anal Chem ; 96(18): 6995-7004, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666367

RESUMO

Lipopolysaccharide (LPS) presents a significant threat to human health. Herein, a novel method for detecting LPS was developed by coupling hybridization chain reaction (HCR), gold nanoparticles (AuNPs) agglutination (AA) triggered by a Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry (CuAAC), and electrokinetic accumulation (EA) in a microfluidic chip, termed the HCR-AA-EA method. Thereinto, the LPS-binding aptamer (LBA) was coupled with the AuNP-coated Fe3O4 nanoparticle, which was connected with the polymer of H1 capped on CuO (H1-CuO) and H2-CuO. Upon LPS recognition by LBA, the polymers of H1- and H2-CuO were released into the solution, creating a "one LPS-multiple CuO" effect. Under ascorbic acid reduction, CuAAC was initiated between the alkyne and azide groups on the AuNPs' surface; then, the product was observed visually in the microchannel by EA. Finally, LPS was quantified by the integrated density of AuNP aggregates. The limit of detections were 29.9 and 127.2 fM for water samples and serum samples, respectively. The levels of LPS in the injections and serum samples by our method had a good correlation with those from the limulus amebocyte lysate test (r = 0.99), indicating high accuracy. Remarkably, to popularize our method, a low-cost, wall-power-free portable device was developed, enabling point-of-care testing.


Assuntos
Química Click , Ouro , Lipopolissacarídeos , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Lipopolissacarídeos/análise , Humanos , Azidas/química , Limite de Detecção , Cobre/química , Alcinos/química , Aptâmeros de Nucleotídeos/química
4.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673948

RESUMO

A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully used in the transfer hydrogenation of substituted styrenes and phenylacetylenes with ammonia borane as a hydrogen source. Key advantages of the reported catalytic system include mild reaction conditions, high selectivity and tolerance to functional groups of substrates.


Assuntos
Boranos , Cobalto , Bases de Schiff , Hidrogenação , Cobalto/química , Bases de Schiff/química , Catálise , Boranos/química , Complexos de Coordenação/química , Alcinos/química , Amônia/química , Estrutura Molecular
5.
Anal Methods ; 16(17): 2751-2759, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38634398

RESUMO

Exosomes have gained recognition as valuable reservoirs of biomarkers, holding immense potential for early cancer detection. Consequently, there is a pressing need for the development of an economical and highly sensitive exosome detection methodology. In this work, we present a fluorescence method for breast cancer-derived exosome detection based on Cu-triggered click reaction of azide-modified CD63 aptamer and alkyne functionalized Pdots. The detection threshold for the exosomes obtained from the breast cancer serum was determined to be 6.09 × 107 particles per µL, while the measurable range spanned from 6.50 × 107 to 1.30 × 109 particles per µL. The employed methodology achieved notable success in accurately distinguishing breast cancer patients from healthy individuals through serum analysis. The application of this method showcases the significant potential for early exosome analysis in the clinical diagnosis of breast cancer patients.


Assuntos
Alcinos , Aptâmeros de Nucleotídeos , Azidas , Técnicas Biossensoriais , Neoplasias da Mama , Química Click , Exossomos , Tetraspanina 30 , Humanos , Neoplasias da Mama/sangue , Feminino , Exossomos/química , Tetraspanina 30/metabolismo , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Azidas/química , Alcinos/química , Corantes Fluorescentes/química , Polímeros/química
6.
Anal Chem ; 96(17): 6643-6651, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626411

RESUMO

Visualizing the distribution of small-molecule drugs in living cells is an important strategy for developing specific, effective, and minimally toxic drugs. As an alternative to fluorescence imaging using bulky fluorophores or cell fixation, stimulated Raman scattering (SRS) imaging combined with bisarylbutadiyne (BADY) tagging enables the observation of small molecules closer to their native intracellular state. However, there is evidence that the physicochemical properties of BADY-tagged analogues of small-molecule drugs differ significantly from those of their parent drugs, potentially affecting their intracellular distribution. Herein, we developed a modified BADY to reduce deviations in physicochemical properties (in particular, lipophilicity and membrane permeability) between tagged and parent drugs, while maintaining high Raman activity in live-cell SRS imaging. We highlight the practical application of this approach by revealing the nuclear distribution of a modified BADY-tagged analogue of JQ1, a bromodomain and extra-terminal motif inhibitor with applications in targeted cancer therapy, in living HeLa cells. The modified BADY, methoxypyridazyl pyrimidyl butadiyne (MPDY), revealed intranuclear JQ1, while BADY-tagged JQ1 did not show a clear nuclear signal. We anticipate that the present approach combining MPDY tagging with live-cell SRS imaging provides important insight into the behavior of intracellular drugs and represents a promising avenue for improving drug development.


Assuntos
Núcleo Celular , Humanos , Células HeLa , Núcleo Celular/química , Núcleo Celular/metabolismo , Microscopia Óptica não Linear/métodos , Alcinos/química , Análise Espectral Raman/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
7.
Molecules ; 29(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542953

RESUMO

The international peptide community rejoiced when one of its most distinguished members, Morten Meldal of Denmark, shared the 2022 Nobel Prize in Chemistry. In fact, the regiospecific solid-phase "copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides" (CuACC) reaction-that formed the specific basis for Meldal's recognition-was reported first at the 17th American Peptide Symposium held in San Diego in June 2001. The present perspective outlines intertwining conceptual and experimental threads pursued concurrently in Copenhagen and Minneapolis, sometimes by the same individuals, that provided context for Meldal's breakthrough discovery. Major topics covered include orthogonality in chemistry; the dithiasuccinoyl (Dts) protecting group for amino groups in α-amino acids, carbohydrates, and monomers for peptide nucleic acids (PNA); and poly(ethylene glycol) (PEG)-based solid supports such as PEG-PS, PEGA, and CLEAR [and variations inspired by them] for solid-phase peptide synthesis (SPPS), solid-phase organic synthesis (SPOS), and combinatorial chemistry that can support biological assays in aqueous media.


Assuntos
Ácidos Nucleicos Peptídicos , Peptídeos , Humanos , Peptídeos/química , Ácidos Nucleicos Peptídicos/química , Aminoácidos , Azidas/química , Alcinos/química , Química Click
8.
J Org Chem ; 89(7): 4512-4522, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38500313

RESUMO

Over the past two decades, the introduction of bioorthogonal reactions has transformed the ways in which chemoselective labeling, isolation, imaging, and drug delivery are carried out in a complex biological milieu. A key feature of a good bioorthogonal probe is the ease with which it can be attached to a target compound through bioconjugation. This paper describes the expansion of the utility of a class of unique S-, N-, and O-containing heterocyclooctynes (SNO-OCTs), which show chemoselective reactivity with type I and type II dipoles and divergent reactivities in response to electronic tuning of the alkyne. Currently, bioconjugation of SNO-OCTs to a desired target is achieved through an inconvenient aryl or amide linker at the sulfamate nitrogen. Herein, a new synthetic approach toward general SNO-OCT scaffolds is demonstrated that enables the installation of functional handles at both propargylic carbons of the heterocycloalkyne. This capability increases the utility of SNO-OCTs as labeling reagents through the design of bifunctional bioorthogonal probes with expanded capabilities. NMR kinetics also revealed up to sixfold improvement in cycloaddition rates of new analogues compared to first-generation SNO-OCTs.


Assuntos
Alcinos , Nitrogênio , Reação de Cicloadição , Alcinos/química , Nitrogênio/química , Indicadores e Reagentes , Amidas
9.
Int J Biol Macromol ; 264(Pt 1): 130567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453120

RESUMO

Alginate, a polyuronic biopolymer composed of mannuronic and guluronic acid units, contain hydroxyl and carboxyl groups as targeting modification sites to obtain structures with new and/or improved biological properties. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a versatile click reaction for polymer functionalization, but it typically requires a "pre-click" modification to introduce azide or alkyne groups. Here, we described a straightforward chemical path to selectively modify alginate carboxyl groups producing versatile azido derivatives through N-acylation using 3-azydopropylamine. The resulting azide-functionalized polysaccharides underwent click chemistry to yield amino derivatives, confirmed by NMR and FTIR analyses. The 1H NMR spectrum reveals a characteristic triazole group signal at 8.15 ppm. The absence of the azide FTIR band for all amino derivatives, previously observed for the N-acylation products, indicated reaction success. Antibacterial and antioxidant assessments revealed that the initial polysaccharide lacks E. coli inhibition, while the click chemistry-derived amine products exhibit growth inhibition at 5.0 mg/mL. Lower molecular weight derivatives demonstrate superior DPPH scavenging ability, particularly amino-derivatives (24-33 % at 1.2 mg/mL). This innovative chemical pathway offers a promising strategy for developing polysaccharide structures with enhanced properties, demonstrating potential applications in various fields.


Assuntos
Alginatos , Azidas , Azidas/química , Escherichia coli , Polímeros/química , Química Click , Alcinos/química , Cobre/química , Reação de Cicloadição
10.
Angew Chem Int Ed Engl ; 63(14): e202314786, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38438780

RESUMO

Due to the variety of roles served by the cell membrane, its composition and structure are complex, making it difficult to study. Bioorthogonal reactions, such as the strain promoted azide-alkyne cycloaddition (SPAAC), are powerful tools for exploring the function of biomolecules in their native environment but have been largely unexplored within the context of lipid bilayers. Here, we developed a new approach to study the SPAAC reaction in liposomal membranes using azide- and strained alkyne-functionalized Förster resonance energy transfer (FRET) dye pairs. This study represents the first characterization of the SPAAC reaction between diffusing molecules inside liposomal membranes. Potential applications of this work include in situ bioorthogonal labeling of membrane proteins, improved understanding of membrane dynamics and fluidity, and the generation of new probes for biosensing assays.


Assuntos
Bicamadas Lipídicas , Lipossomos , Lipossomos/química , Reação de Cicloadição , Azidas/química , Alcinos/química
11.
Bioconjug Chem ; 35(3): 286-299, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451202

RESUMO

Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.


Assuntos
Lisina , Muramidase , Lisina/química , Indicadores e Reagentes , Peptídeos/química , Aminas , Azidas/química , Química Click , Alcinos/química
12.
ACS Appl Mater Interfaces ; 16(9): 11315-11323, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394235

RESUMO

Adenosine triphosphate (ATP) is a central molecule of organisms and is involved in many biological processes. It is also widely used in biocatalytic processes, especially as a substrate and precursor of many cofactors─such as nicotinamide adenine dinucleotide phosphate (NADP(H)), coenzyme A (CoA), and S-adenosylmethionine (SAM). Despite its great scientific interest and pivotal role, its use in industrial processes is impeded by its prohibitory cost. To overcome this limitation, we developed a greener synthesis of adenosine derivatives and efficiently selectively grafted them onto organic nanoparticles. In this study, cellulose nanocrystals were used as a model combined with click chemistry via a copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC). The grafted adenosine triphosphate derivative fully retains its biocatalytic capability, enabling heterobiocatalysis for modern biochemical processes.


Assuntos
Química Click , Nanopartículas , Celulose/química , Biocatálise , Adenosina , Nanopartículas/química , Azidas/química , Trifosfato de Adenosina , Alcinos/química , Cobre/química , NADP , Catálise
13.
Angew Chem Int Ed Engl ; 63(15): e202318534, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38343199

RESUMO

Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S). The formed selenoalkyne connection is readily elaborated, thus endowing this chemistry with multidimensional molecular diversity. Besides, this reaction is modular, predictable, and high-yielding, features fast kinetics (k2≥14.43 M-1 s-1), excellent functional group compatibility, and works well at miniaturization (nanomole-scale), opening up many interesting opportunities for organo-Se synthesis and bioconjugation, as exemplified by sequential click chemistry (coupled with ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) and sulfur-fluoride exchange (SuFEx)), selenomacrocycle synthesis, nanomole-scale synthesis of Se-containing natural product library and DNA-encoded library (DEL), late-stage peptide modification and ligation, and multiple functionalization of proteins. These results indicated that SeNEx is a useful strategy for new click chemistry developments, and the established SeNEx chemistry will serve as a transformative platform in multidisciplinary fields such as synthetic chemistry, material science, chemical biology, medical chemistry, and drug discovery.


Assuntos
Química Click , Selênio , Química Click/métodos , Química Farmacêutica/métodos , Proteínas/química , Alcinos/química , Azidas/química , Reação de Cicloadição
14.
STAR Protoc ; 5(1): 102900, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367230

RESUMO

Alkynes are widely present in natural products and pharmaceutical compounds. Here, we present a protocol for nickel-catalyzed cross-coupling of terminal alkynes with aryl iodides or bromides for constructing a C(sp2)-C(sp) bond. We describe steps for reagent preparation, reaction setup, purification process, and product characterization. We also detail procedures for obtaining a single crystal of 6-(phenylethynyl)-1-(phenylsulfonyl)-1H-indole (3b). The application of this protocol is limited to aryl bromide and iodide. For complete details on the use and execution of this protocol, please refer to Chen et al.1.


Assuntos
Alcinos , Níquel , Níquel/química , Alcinos/química , Catálise
15.
Macromol Rapid Commun ; 45(9): e2300644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350089

RESUMO

A tetra(ethylene glycol)-based 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) is synthesized in two steps including: i) the catalyst-free polyaddition of a diazide and an activated internal dialkyne and ii) the N-alkylation of the resulting 1,2,3-triazole groups. In order to provide detailed structure/properties correlations different analogs are also synthesized. First, parent poly(1,2,3-triazole)s are obtained via AA+BB polyaddition using copper(I)-catalyzed alkyne-azide cycloaddition or metal-free thermal alkyne-azide cycloaddition (TAAC). Poly(1,2,3-triazole)s with higher molar masses are obtained in higher yields by TAAC polyaddition. A 1,3,4-trisubstituted poly(1,2,3-triazolium) structural analog obtained by TAAC polyaddition using a terminal activated dialkyne and subsequent N-alkylation of the 1,2,3-triazole groups enables discussing the influence of the methyl group in the C-4 or C-5 position on thermal and ion conducting properties. Obtained polymers are characterized by 1H, 13C, and 19F NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and broadband dielectric spectroscopy. The targeted 1,3,4,5-tetrasubstituted poly(1,2,3-triazolium) exhibits a glass transition temperature of -23 °C and a direct current ionic conductivity of 2.0 × 10-6 S cm-1 at 30 °C under anhydrous conditions. The developed strategy offers opportunities to further tune the electron delocalization of the 1,2,3-triazolium cation and the properties of poly(1,2,3-triazolium)s using this additional substituent as structural handle.


Assuntos
Alcinos , Reação de Cicloadição , Polímeros , Triazóis , Triazóis/química , Polímeros/química , Polímeros/síntese química , Alcinos/química , Estrutura Molecular , Catálise , Cobre/química
16.
Nano Lett ; 24(4): 1341-1350, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252869

RESUMO

In situ drug synthesis using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has attracted considerable attention in tumor therapy because of its satisfactory effectiveness and reduced side-effects. However, the exogenous addition of copper catalysts can cause cytotoxicity and has hampered biomedical applications in vivo. Here, we design and synthesize a metal-organic framework (MOF) to mimic copper chaperone, which can selectively modulate copper trafficking for bioorthogonal synthesis with no need of exogenous addition of copper catalysts. Like copper chaperones, the prepared ZIF-8 copper chaperone mimics specifically bind copper ions through the formation of coordination bonds. Moreover, the copper is unloaded under the acidic environment due to the dissipation of the coordination interactions between metal ions and ligands. In this way, the cancer cell-targeted copper chaperone mimics can selectively transport copper ions into cells. Regulation of intracellular copper trafficking may inspire constructing bioorthogonal catalysis system with reduced metal cytotoxicity in live cells.


Assuntos
Alcinos , Cobre , Cobre/farmacologia , Cobre/química , Alcinos/química , Azidas/química , Reação de Cicloadição , Catálise , Íons
17.
Expert Opin Drug Discov ; 19(3): 267-280, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214914

RESUMO

INTRODUCTION: The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell. AREAS COVERED: The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry. EXPERT OPINION: Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.


Assuntos
Química Click , Descoberta de Drogas , Humanos , Química Click/métodos , Descoberta de Drogas/métodos , Cobre/química , Alcinos/química , Azidas/química , Triazóis/química
18.
Bioorg Chem ; 143: 106982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995642

RESUMO

Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.


Assuntos
Azidas , Química Click , Maleimidas , Compostos de Sulfidrila , Azidas/química , Alcinos/química , Reação de Cicloadição , Cobre/química
19.
J Mol Graph Model ; 126: 108643, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806144

RESUMO

AuCl-, AuCl3-, or AuClPEt3-catalyzed formation mechanisms of pyrazolo[1,4]oxazepines and the NaH-promoted mechanism of pyrazolo[1,4]oxazines were investigated computationally. The structural properties of the reactants were studied in various solvents and with different functionals. The hybrid functionals B3LYP, M06, M06-2X, PBEPBE, and wB97X-D in density functional theory were used to determine and discuss the energetics of the compounds. The electronic properties of groups (R = H or R ≠ H) attached to the alkyne moiety played an essential role in the corresponding 7-endo-dig cyclization or 6-exo-dig cyclization in the presence of a gold catalyst. The regioselectivities of the products were investigated, and the natural bond orbitals of the reactants were determined. Furthermore, a gold-catalyzed alternative mechanism is suggested for synthesizing pyrazolo[1,4]oxazines using a terminal alkyne (R = H) moiety as substrate.


Assuntos
Oxazepinas , Oxazinas , Estrutura Molecular , Ouro/química , Alcinos/química
20.
Bioconjug Chem ; 34(12): 2375-2386, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079189

RESUMO

Nanocarriers have shown their ability to extend the circulation time of drugs, enhance tumor uptake, and tune drug release. Therapeutic peptides are a class of drug compounds in which nanocarrier-mediated delivery can potentially improve their therapeutic index. To this end, there is an urgent need for orthogonal covalent linker chemistry facilitating the straightforward on-the-resin peptide generation, nanocarrier conjugation, as well as the triggered release of the peptide in its native state. Here, we present a copper-free clickable ring-strained alkyne linker conjugated to the N-terminus of oncolytic peptide LTX-315 via standard solid-phase peptide synthesis (SPPS). The linker contains (1) a recently developed seven-membered ring-strained alkyne, 3,3,6,6-tetramethylthiacycloheptyne sulfoximine (TMTHSI), (2) a disulfide bond, which is sensitive to the reducing cytosolic and tumor environment, and (3) a thiobenzyl carbamate spacer enabling release of the native peptide upon cleavage of the disulfide via 1,6-elimination. We demonstrate convenient "clicking" of the hydrophilic linker-peptide conjugate to preformed pegylated core-cross-linked polymeric micelles (CCPMs) of 50 nm containing azides in the hydrophobic core under aqueous conditions at room temperature resulting in a loading capacity of 8 mass % of peptide to polymer (56% loading efficiency). This entrapment of hydrophilic cargo into/to a cross-linked hydrophobic core is a new and counterintuitive approach for this class of nanocarriers. The release of LTX-315 from the CCPMs was investigated in vitro and rapid release upon exposure to glutathione (within minutes) followed by slower 1,6-elimination (within an hour) resulted in the formation of the native peptide. Finally, cytotoxicity of LTX CCPMs as well as uptake of sulfocyanine 5-loaded CCPMs was investigated by cell culture, demonstrating successful tumor cell killing at concentrations similar to that of the free peptide treatment.


Assuntos
Portadores de Fármacos , Neoplasias , Humanos , Portadores de Fármacos/química , Peptídeos/uso terapêutico , Micelas , Polímeros/química , Neoplasias/tratamento farmacológico , Oxirredução , Alcinos/química , Dissulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA